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A class of solutions is obtained for the heat-conduction equations in the case of a 
power relation between the coefficient of thermal conductivity and the temperature. 

Analytic solutions have not lost their topicality in spite of the fact that numerical 
methods for solving partial differential equations have attained a high level of development. 
Considerable attention is given to the solutions of nonlinear equations and, in particular, 
to the nonlinear equation of heat conduction. The results of solving a nonlinear equation 
of heat conduction can find application in diffusion or filtration problems depending on the 
physical sense of the sought function. 

The profile of a nonlinear heat wave was obtained in [i]~ In [2, 3] one-dimensional 
self-consistent solutions were found corresponding to the cases in which the amplitudes in- 
creasing as powers of time or heat flux were given. In [4] the self-consistent solution was 
obtained for the null value of the amplitude on the boundary. This has proved that for the 
solution to exist the first moment of the temperature must be constant. The results of [3, 
4] for the two-dimensional case were extended in [5], where by introducing artificial param- 
eters self-consistent solutions were obtained which correspond to all the possible variants 
for specifying the boundary conditions. A method for obtaining the general solution was 
proposed in [6]. There still remain the difficulties related to the finding of arbitrary 
functions appearing in general solutions from the given relations between the thermophysical 
parameters. 

In the present article the solutions are found of one-dimensional nonlinear equations 
of heat conduction in the form of a sum of powers of the coordinate. The time-dependent co- 
efficients are obtained in their general form. 

The nonlinear one-dimensional heat-conduction equation 

OTS 1 0 (r~aT. OT ) 
a~ - r ~ Or 0--~ ' ( l ) 

where u = 0, I, 2 for the case of planar, axial, or central symmetry, respectively, is con- 
sidered. 

The nonlinearity of Eq. (i) prohibits the use of well-known methods of mathematical phy- 
sics. In a number of cases nonstationary solutions are found in the class of generalized 
functions. Such solutions cannot be differentiable at two points of the heat flux: at the 
front of the heat wave ru(t) and at the boundary r = 0. 

It is known that in some sense the self-consistent solutions are limits of the non- 
self-consistent ones [7]. The analysis of self-consistent solutions [5] has enabled one to 
find out what transformations of Eq. (I) are necessary for the solutions to be sought in the 
form of polynomials. 

The solution of (i) is sought in the form of a travelling wave on whose front ra(t) the 
continuity conditions are satisfied for the temperature and for the heat flux: 

T = aT ~ 07" = O. ( 2 )  
& 
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The function ru(t) is found by solving 

dr~ _ lim aT "-~ OF 
dt r~r~(O Or (3) 

Equation (3) was obtained for planar symmetry [i] but its form is maintained for other 
symmetries as well. 

In (i) the sought function is modified. One sets 

g(r ,  t) = T"-S+l(r, t). 

The partial differentiation will from now on be denoted by subscripts. 
g(r, t) one obtains 

s 
- -  r g  t ~ r 

a 

The expression (3) now becomes 

dr~ (t) 

(4) 

For the function 

( gg~r + n - - s +  1 g2 -c o~gg~. (5)  

Tile two equalities in (2) 

- -  = - -  - l i m  

dt n - -  s ~ 1 r.*r~(O 

are reduced to a single one: 

g [r_~rcdt ) = O. 
One now replaces the space variable by 

Instead of (5) one obtains 

The solution of (9) 

a 
gr" (6) 

(7) 

r = ~p. (8) 

s ,qg.~. (9) 
n ~ s - - ' -  1 

s P~ll2V-lgt = g [ ~ l g ~ -  (o~p - - p  + 1)g~] 
a 

is sought in the polynomial form: 

e(n, 0 x' n'. = ~ A~ ( t )  
f=O 

( i0)  

The degree m of the polynomial is related to the index p by 

m=2p, (ll) 

that is, m ~3. 

Having substituted (I0) into (9) and carried out the required operations, one obtains 
from the comparison of the coefficients at the equal powers of u on both sides of the equality 
a system of 2m algebraic and differential equations for the (m + l)-th coefficient of Ai(t). 
In particular, by setting the coefficients of ~o equal to zero one obtains 

AoA I = 0, (12) 

which is required for solving two variants of the boundary conditions: 

I. A0~A0 , A i 0, (13) 

2. A o = 0, AI~0. (14) 

Having substituted (13) or (14) into the remaining 2m -- 1 equations, one can see that 
the majority of the coefficients Ai(t) vanish. There remains a system of differential equa- 
tions whose number is at most three; it is used to determine the remaining unknown functions. 
The computational details are omitted and only the final results given; the following nota- 
tion has been introduced to simplify them: 

= 2 =  a +  l + 2 v  t + C 1 ;  (15)  
s 

v = s/(n -- s + i); C, is an integration constant. 

i. A, = 0, m is an odd integer. The solution is of ths form 

g(r ,  t) = Ao( t  ) + Am(l )r  2, (16)  

where 

3 2 0  



A o (t) = C~ I ~+~ ; A m ( t ) = -  �9 (17) 
~ - -  1.-~-2zJ 

,'1: 

The solution (16) with (17) satisfies the boundary condition: the heat flux is equal 
to zero. It has a physical sense for all forms of symmetry. 

2. AI = 0, m is an even integer. The solution in the form of (I0) is only possible 
for the case of planar symmetry; then it is 

g ( r ,  1) = Ao(O + A p ( t ) r  + A m (t)r  2, ( 1 8 )  

where 

C 2 1 C 2 C s 1 (19) 
3 �9 A v ( t )  - -  , A m ( l )  . . . .  A o (t) -- 4 x ' ' "c ,; 

1-7-2v 
T, 

The solution of (18) with (19) corresponds to the case in which on the boundary r = 0 
neither the temperature nor the heat flux vanishes. 

3. Ao = 0. Formally, the solution is of the form 

! 

g(r ,  t) = A l ( O r  p + A m ( l ) r  2, (20 )  
where 

A t ( t  ) : C_A_2 ; Am( t  ) = _ 1___; q =  2p2(1 ~ ~) ~ p ( ~ - -  I) + 1 4pv__. (21) 
rq �9 2 f  ( 1 + ~ ~ 2v) 

On the parameters s and n one imposes the constraint 

v = p - - ! - - ~ p .  (22) 

The constraint (22) has no physical sense in the case of axial symmetry, a = !. 

In the expressions (17), (19), (21), etc., C i are integration constants. By substitut- 
ing the solutions (16), (18), (20) in (6) one finds the coordinates of the fronts of the heat 
waves as functions of time. One obtains, respectively, 

r~(t)= C3 Tu, ~ = 0 ;  l; 2, (23) 
t . a  s 

ro(t) = ~ -  + C4~ ~ + ~ + l  ' (24) 1 

P 

r=(t) = T 2(C2r + Cs) 2p-i , ~ = 0; 2, (25) 

9 9 

= -  1 = 2 v '  2p 2 (1 - -  ~) 

The boundary condition (7) at the front is satisfied: for the solution (16), (17), (23) if 
C2 = C 2"s, for (18), (19), (24) if Ca = C~', and for (20), (21), (25) if C3 = 0. The arbitrary 
constants appearing in the solutions are determined from the known initial conditions. 

Let us now consider the constraints which should be satisfied by the parameters n and s. 
For the solution (16) one has n + i > s and also 

One has, in addition, 

At the front one has 

T~[~=~(o:O, n < s < n ~ -  1, 

O < T ~ [ r = ( t ) , q < o o ,  n = s ,  

T r ~ oo, n > s .  
r.-,.ro:(O 

in the case of central symmetry, 

Tr --> oo . 
r~r~r,t) 

3(n + i) < s. 

The solution (19) with planar symmetry makes sense for n > s. The temperature gradient 
at the front is infinite. 
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Finally, in the solution (20) the physical parameters n and s must satisfy the equalities 

n + l  m n §  m 
--------, s-----0, - - - - - - ,  o ~ = 2 .  

s m - - 2  s t a ~ - 2  

NOTATION 

T, temperature; r, coordinate; ~ t, time; a, dimensional parameter; s, n, dimensionless 
parameters. 
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EFFECT OF PERIODIC SYSTEM OF NARROW INCLUSIONS ON A 

PLANE STEADY TEMPERATURE FIELD 

I. M. Abdurakhmanov and B. G. Alibekov UDC 536.24.02 

Finding the complex potential of a plane temperature field perturbed by a periodic 
system of narrow inclusions reduces to solving a singular integrodifferential equa- 
tion. The effect of cracks on an arbitrary periodic temperature field is considered. 

i. Let a plane periodic (period 2a) steady temperature field determined by the harmonic 
function To(x, y) = Re F(t) be perturbed by a 2a-periodic system of narrow macroinclusions 
of a different material or cracks. For approximate formulation of the problem and its ef- 
fective solution, we take the narrow inclusions as lines in the complex z plane. To be spe- 
cific, we assume that the thermal conductivity of the inclusions ko is considerably less than 
that of the main medium (the body) k, i.e., ko << k. 

Isolating in the z plane a band of width 2a (--a~x~a), we denote the narrow inclu- 
sions present in the band, taken in any order, by Fn, n = i, 2, ..., N. We denote the set 
of all the lines r n by F, i.e., F = F, + ... + F N. 

The problem is to find the complex potential of the periodic temperature field perturbed 
by the inclusions, W(z) = T + iV; T is the temperature and # the current function. 

We write W(z) as the sum of the potential of the temperature field of the homogeneous 
medium (without inclusions) F(z) and integrals of Cauchy type taken along the line F and all 
of the congruent lines, i.e., we write 

_ _  ~ (t) ctg ~ (t - - Z ) d t .  ( 1 . 1 )  
I V ( z ) = F ( z ) + @ ( z ) ,  ~ ( z ) =  4ai v 2a 

r 
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